
Knowledgebase > Research Systems > Slurm Job Submission How-to

Slurm Job Submission How-to
Helen Wang - 2026-01-18 - Research Systems

How to Create Job Scripts with R, Python, Bash
In this tutorial we will write a job submission script for SLURM. Assume that you have an account on SOMHPC
or other campus HPC system running SLURM and understand the jobs submission procedure introduced in
SLURM User Guide.

Scenario

HPC cluster with a job manager such as SLURM is a great way to scale your jobs for data analysis and other
large computation work! In this tutorial, we will walk through a very simple method to do this using different
strategies.

Write an executable script in R / Python1.

Organize your inputs, output location, and scripts.2.

Loop over some set of variables and submit a SLURM job to use your3.

executable to process each one.

We will cover each of these steps in detail.

Write an Executable Script
You first have some script in R or Python. It likely reads in data, processes it, and creates a result. You will need
to turn this script into an executable, meaning that it accepts variable arguments.

Using R

A simple parse is to retrieve your script inputs with just a few lines:

args = commandArgs(TRUE)

input1 = args[1]

input2 = args[2]

input3 = args[3]

Your code here!

if I saved this in a script called “run.R” I could then execute:

https://it.somhelp.vcu.edu/
https://it.somhelp.vcu.edu/kb
https://it.somhelp.vcu.edu/kb/research-systems
https://it.somhelp.vcu.edu/kb/articles/slurm-job-submission-how-to
https://it.somhelp.vcu.edu/kb/research-systems

$ Rscript run.R bird1 bird2 bird3

and input1 would be assigned to “bird1,” and “bird2” and “bird3” to input2 and input3, respectively.

Using Python

In Python, we use the sys module. The same would look like this:

import sys

input1 = sys.argv[1]

input2 = sys.argv[2]

input3 = sys.argv[3]

Your code here!

Calling would then look like:

$ python run.py bird1 bird2 bird3

sys.argv is actually just a list of your calling script and the input arguments following it. Python starts
indexing at 0, and we are skipping over the value at sys.argv[0]. This would actually coincide to the name
of your script.

A Little About Executables

When you write your executable, it’s good practice to not hard code any variables For example, if my script is
going to process an input file, I could take in just a subject identifier and then define the full path in the script,
but If you change a location, your script breaks. Instead, assign this path duty to the calling script. This means
that your executable should instead expect a general input_path:

R Example DO THIS

...

input_path = args[3]

(!file.exists(input_path)){

 cat('Cannot find', input_path, 'exiting!\n')

 stop()

}

Python Example DO THIS

input_path = sys.argv[3]

if not os.path.exists(input_path)

 print('Ruhroh, %s doesn't exist!' %input_path)

 sys.exit 1

Notice that for both, as a sanity check we check that input_path exists.

Loop submission using your executable:
You then want to loop over some set of input variables (for example, csv files with data.) You can imagine doing
this on your computer - each of the inputs would be processed in serial. That can take many hours if you have a
few hundred inputs each taking 10 minutes, and it’s totally unfeasible if you have thousands of simulations, each
of which might need 30 minutes to an hour.

Strategy 1: Submit a Job File

A submission script looks like this:

#!/bin/bash

#SBATCH --job-name=MyHPC.job

#SBATCH --output=.out/MyHPC.out

#SBATCH --error=.out/MyHPC.err

#SBATCH --time=2-00:00

#SBATCH --mem=12000

#SBATCH --qos=debug

#SBATCH --mail-type=ALL

#SBATCH --mail-user=$USER@vcu.edu

Rscript $HOME/myHPCJOBS/run.R bird1 bird2 bird3

Importantly, notice the last line! It’s just a single line that calls our script to run our job. In fact, look at the
entire file, and the interpreter at the top - #!/bin/bash - it’s just a bash script! The only thing that makes it
a little different is all of the #SBATCH commands. What’s that about? This is actually the syntax that SLURM
understands as a configuration argument for your job. It just corresponds with the way that you submit the job
to slurm using the sbatch command. In fact, you are free to write whatever lines that you need after
the SBATCH lines. You can expect that the node running the job will have all the same information that you
have on a login node. This means it will source your bash profile, and know the locations of your $HOME and
$SCRATCH. It also means that you can run the same commands like module load if you need special
software for the job.

What do all the different variables mean?

Some of the above are obvious, like --mem corresponds to memory in GB, --time in the format above means
2 days, and the output and error correspond to file paths to write output and error to. For full descriptions of all
the options, the best source is the man pages (linux manual) which you can read via:

$ man sbatch

If you just had the one job file above, let’s say it were called MyHPC.job, you would submit it like this to
slurm:

sbatch MyHPC.job

If it falls within the node limits and accounting, you will see that the job is submit. If you need a helper tool to
generate just one template, check out the Job maker that I put together a few years ago.

Strategy 2: Submit Directly to sbatch

What if you had the script RScript, and you didn’t want to create a job file? You can do the exact same
submission using sbatch directly:

sbatch --job-name=MyHPC.job \

 --output=.out/MyHPC.out \

 --error=.out/MyHPC.err

https://vsoch.github.io/lessons/sherlock-jobs/#loop-submission-using-your-executable
https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/sbatch.html
https://researchapps.github.io/job-maker/

 --time=2-00:00 \

 --mem=12000 \

 --qos=debug \

 Rscript $HOME/MYHPCJOBS/run.R bird1 bird2 bird3

and then of course you would need to reproduce that command to run it again.

Write a Loop Submission Script

Here I will show you very basic example in each of R, Python, and bash to loop through a set up input variables
(the subject identifier to derive an input path) to generate job files, and then submit them. We can assume the
following:

the number of jobs to submit is within our accounting limits,
so we will submit them all at once (meaning they get added to the
queue).

at the start of the script, you check for existence of
directories. Usually you will need to create a top level or subject
level directory somewhere in the loop, given that it doesn’t exist.

you have permission to write to where you need to write. This
not only means that you have write permission, but if you are writing
to a shared space, you make sure that others will too.

Bash Submission

Bash scripting is the most general solution, and we will start with it. Here is a basic template to generate the
SBATCH script above. Let’s call this script run_jobs.sh

#!/bin/bash

We assume running this from the script directory

job_directory=$PWD/.job

data_dir="${SCRATCH}/project/birdsfly”

birds=("bird1" "bird2")

for bird in ${birds[@]}; do

 job_file="${job_directory}/${bird}.job"

 echo "#!/bin/bash

#SBATCH --job-name=${bird}.job

#SBATCH --output=.out/${bird}.out

#SBATCH --error=.out/${bird}.err

#SBATCH --time=2-00:00

#SBATCH --mem=12000

#SBATCH --qos=debug

#SBATCH --mail-type=ALL

#SBATCH --mail-user=$USER@vcu.edu

Rscript $HOME/birdfly /run.R A B C" > $job_file

 sbatch $job_file

done

Notice that we are echoing the job into the $job_file. We are also launching the newly created job with the
last line sbatch $job_file.

Good Practices:
Finally, here are a few good job submission practices.

Always use full paths. For the scripts, it might be reasonable to use
relative paths, and this is because they are run in context of their
own location. However, in the case of data and other files, you should
always use full paths.

Don’t run large computation on the login nodes! It negatively
impacts all cluster users. Grab a development node with sdev.

Think about how much memory you actually need. You want to
set a bit of an upper bound so a spike doesn’t kill the job, but you also
don’t want to waste resources when you (or someone else) could be
running more jobs.

You should generally not run anything massive before it is
tested. This means that after you write your loop script, you might
step through it manually, submit the job, ensure that it runs
successfully, and inspect the output.

And as a reminder, here are some useful SLURM commands for
checking your job.

Show the overall status of each partition

sinfo

Submit a job

sbatch .jobs/jobFile.job

See the entire job queue

squeue

See only jobs for a given user

squeue -u username

Count number of running / in queue jobs

squeue -u username | wc -l

Get estimated start times for your jobs

squeue --start -u username

Show the status of a currently running job

sstat -j jobID

Show the final status of a finished job

sacct -j jobID

Kill a job with ID $PID

scancel $PID

Kill ALL jobs for a user

scancel -u username

Kill all pending jobs

scancel -u username --state=pending

Run interactive node with 16 cores (12 plus all memory on 1 node) for 4 hours:

srun -n 12 -N 1 --mem=64000 --time 4:0:0 --pty bash

Claim interactive node for exclusive use, 8 hours

srun --exclusive --time 8:0:0 --pty bash

Same as above, but with X11 forwarding

srun --exclusive --time 8:0:0 --x11 --pty bash

Same as above, but with priority over your other jobs

srun --nice=9999 --exclusive --time 8:0:0 --x11 --pty -p dev -t 12:00 bash

Check utilization of group allocation

sacct

Running jobs in the group allocation

srun -p groupid

sbatch -p groupid

Stop/restart jobs interactively

To stop:

scancel -s SIGSTOP job id

To restart (this won't free up memory):

scancel -s SIGCONT job id

Get usage for file systems

df -k

df -h $HOME

Get usage for your home directory

du

Counting Files

find . -type f | wc -l

